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ABSTRACT
Compactly representing the visual signals is of fundamental im-
portance in various image/video-centered applications. Although
numerous approaches were developed for improving the image and
video coding performance by removing the redundancies within
visual signals, much less work has been dedicated to the transfor-
mation of the visual signals to another well-established modality
for better representation capability. In this paper, we propose a
new scheme for visual signal representation that leverages the
philosophy of transferable modality. In particular, the deep learn-
ing model, which characterizes and absorbs the statistics of the
input scene with online training, could be efficiently represented in
the sense of rate-utility optimization to serve as the enhancement
layer in the bitstream. As such, the overall performance can be fur-
ther guaranteed by optimizing the new modality incorporated. The
proposed framework is implemented on the state-of-the-art video
coding standard (i.e., versatile video coding), and significantly bet-
ter representation capability has been observed based on extensive
evaluations.
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1 INTRODUCTION
Recently, we have witnessed exponential growth of image/video
services, coinciding with the accelerated proliferation of acquisi-
tion and display devices. The gigantic scale of visual data moti-
vates the research of compact signal representation, which is the
long-standing problem and indispensable in numerous applications.
Traditional methods aim to remove the redundancies within the
visual signals, such as spatial, temporal, statistical and perceptual
redundancies. Based on the philosophy of redundancy removal, a
series of video coding standards have been developed, including
H.264/AVC [70], H.265/HEVC [61], VP9[50], AV1[14], H.266/VVC
[11] and AVS [24].

With the surge of deep learning, numerous efforts have been
devoted to improving the compact signal representation capability
with deep neural networks, including incorporating the neural net-
work into the hybrid video coding framework [22, 32, 34, 36, 37, 41–
43, 49, 53, 54, 60, 73, 80–83] and end-to-end compression [3, 5–
7, 57, 58, 64, 65]. In the first category, intra prediction, inter pre-
diction, loop filtering and entropy coding modules have been sig-
nificantly enhanced with the deep neural networks at both video
encoder and decoder sides. In the second category, the visual infor-
mation is compactly represented with the latent code in the manner
of end-to-end training. Though promising performance has been
achieved, the systematical study regarding the redundancy removal
by transferring from visual information to deep learning model
which is recognized as one important modality of knowledge [16]
on data statistics has been largely ignored.

The deep neural networks have been regarded as the impor-
tant modality of knowledge in Knowledge Centric Networking
(KCN) [71], and the network communication has been widely stud-
ied in the literature [15]. In video delivery [75, 76], the network has
been learned and coded in an online manner, which significantly im-
proves the performance of video streaming. In this paper, based on
the extensive studies on quality enhancement with neural networks,
we make a further attempt by optimally transferring the visual sig-
nals to another well-established modality deep neural network for
better signal representation capability. We aim to explore the possi-
bility of efficient representation of the visual information with deep
learning model in the sense of rate-utility optimization, such that
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the model information could serve as an enhancement layer in the
representation bitstream. As such, instead of internally removing
the redundancies of the visual content, the visual information is
further represented with the assistant of the knowledge in deep
learning models. The contributions of this paper are summarized
as follows.

• We propose to leverage the representation capability of deep
neural networks for further visual redundancy removal on
top of the state-of-the-art compression framework. The pro-
posed scheme is designed based on the philosophy of on-
line modality transfer with model compression and optimal
model selection.

• We propose to efficiently compress the deep learning model
with an effort to optimize the transferable modality. Instead
of quantizing the weight after online model training, weight
quantization has been incorporated by the scale transform
and affine transform during the online training, such that
the model representation is optimized in the training phase,
leading to reproducible performance in the testing phase.

• We propose to optimize the model representation with rate-
utility optimization. In particular, instead of only ensuring
the optimal signal representation capability, the model rate
is also considered in the optimization process. As such, the
overall performance can be ensured by optimal model selec-
tion and representation.

2 RELATEDWORKS
2.1 Image/video compression
Traditional compact visual information representation relies on
image/video compression, and recently numerous image/video cod-
ing standards have been developed based on the hybrid coding
framework, such as JPEG [66], H.264/AVC [70], H.265/HEVC [61],
VP9 [50], AV1 [14], AVS [24] and H.266/VVC [11]. In these stan-
dards, the spatial, temporal, and statistical redundancies have been
fully exploited to improve the coding performance.

Regarding spatial redundancy, the state-of-the-art intra coding
extends the number of angular prediction modes to 67 [18] for
better capturing the arbitrary texture directions. Moreover, Multi-
ple Reference Line (MRL) [13] intra prediction is adopted where
more informative reference lines are involved in the conventional
intra prediction procedure, leading to further removal of the spa-
tial redundancy. To remove temporal redundancy, affine motion
compensated prediction [12] has been introduced to improve the
precision of irregular motions, such as zoom in/out and rotation.

For the removal of the statistical redundancy, Context-Adaptive
Binary Arithmetic Coding (CABAC) [63] is an efficient entropy
coding method, which has been used in H.264/AVC, H.265/HEVC,
AVS, VVC etc. CABAC combines the adaptive binary arithmetic
coding with the context modeling, which brings sufficient adap-
tation and redundancy reduction in a lossless way. Additionally,
Adaptive Loop Filter (ALF) [12] is placed at the last stage of the
codec, which is a Wiener-filter targeting at minimizing the mean
squared error between the original and reconstructed frames. The
entire coding process is optimized with rate-distortion optimization
[62] to ensure the optimal coding performance.

2.2 Neural network compression
Recently, numerous efforts have been devoted to neural network
compression [17], aiming to lessen the massive cost of deep neural
network in terms of both storage and computation without signifi-
cant degradation on the performance. Typically, these approaches
can be divided into eight categories: 1) parameters pruning and
filter selection, 2) quantization, 3) matrix factorization, 4) trans-
ferred convolutional filters, 5) knowledge transfer and distillation,
6) network redesign, 7) transparent compression and 8) entropy
constrains.

In particular, parameter pruning [23, 26, 27] aims to prune the
unnecessary or weak response neurons, and filter selection ap-
proaches [28, 38, 68, 74] attempt to abolish unimportant channels.
Weight quantization [19, 25, 33, 40, 44, 46, 52, 55, 56, 72, 84] quan-
tizes the weights of neural network into binary, ternary values or
their powers with little degradation on accuracy. Considering the
whole neuron weight as a matrix, matrix factorization [45, 48, 78]
can further reconstruct the weight matrix with the low rank meth-
ods. The design philosophy behind transferred convolutional fil-
ters based methods [59, 79] adopts special structural convolutional
filters to shrink the parameters. Regarding the knowledge distill-
ing [4, 29, 47], a small scale network can be learned under the guid-
ance of a large scale teacher network. Furthermore, many new net-
work architectures have been proposed by redesigning the network
structure, such as BinaryNet [20], XNORNet [55], SqueezeNet [35]
and MobileNet [30]. Transparent compression method [39] adopts
the transform coding strategies without modifying the network
structure. Methods based on entropy constrains on parameters
[51, 69] utilize entropy penalized policy to produce compact repre-
sentation of model.

2.3 Deep learning based image/video coding
With the surge of deep learning in many applications, numerous
deep learning based image/video compression approaches have
been proposed to achieve more compact representation of visual sig-
nals. The majority of deep learning based video coding approaches
fall into two categories: end-to-end compression and the substitu-
tion of the modules with deep neural networks in the hybrid coding
framework.

End-to-end compression technologies explore the representa-
tion capacities of deep neural networks which could be end-to-end
trained. As such, a better trade-off between the bitrate and the dis-
tortion can be achieved. The pioneeringwork [64] utilizes Recurrent
Neural Network (RNN) to reconstruct the image in an end-to-end
manner. The Convolutional Neural Network (CNN) based end-to-
end image compressionmethods [5–7] realize effective compression
through Generalized Divisive Normalization (GDN) nonlinearity
embedded analysis and synthesis transforms. The pioneering ap-
proach utilizing the adversarial loss function for image compression
was proposed by Rippel et al. [57]. Subsequently, the Generative
Adversarial Networks (GANs) have been applied to pursue realistic
reconstruction quality of images with very low bitrates [3, 58, 65].

The deep neural networks can also be embedded into main mod-
ules in the hybrid coding framework to improve the coding per-
formance, i.e., intra prediction, inter-prediction, entropy coding
and loop filtering. Intra prediction techniques using deep neural



Figure 1: Illustration of the framework of Modality Transferable Visual Information Representation.

networks [32, 41–43, 54, 81] focus on the improvement of intra pre-
diction efficiency by creating more powerful intra prediction modes.
Deep neural network based inter predictionmethods have improved
the prediction efficiency [34, 73, 82, 83] by generating a more con-
vincing prediction. Song et al. [60] proposed a deep neural network
based entropy coding method to directly predict the probability
distribution of intra modes instead of relying on the handcrafted
context models, such that the statistical redundancy can be further
removed, leading to higher coding efficiency. DNNs based loop
filtering methods have been widely studied [22, 36, 37, 49, 53, 80],
which learn the mapping between the original patches and the
degraded patches to eliminate the inevitable distortion introduced
by the block-based hybrid video compression framework.

In addition, there are a series of approaches incorporating an
adaptively learned CNN model in in-loop filtering during the stan-
dardlization of VVC [31, 77]. Instead of online learning an adaptive
model only, our method aims to explore the capability of modal-
ity transferable visual information representation with the design
philosophy of rate-utility optimization. Moreover, with the pro-
posed rate-utility optimization, the modality transfer capability can
be better exploited by incorporating the proposed method with
any compact representation frameworks. In view of this, we incor-
porate the proposed scheme with the state-of-the-art VVC codec
as an enhancement layer, and superior coding performance has
been achieved. It is noteworthy that the enhancement layer in our
method is CNN based and applied on the degraded frames of base
layer, such that the proposed scheme is compared with these CNN
based video quality enhancement methods on VVC.

3 MODALITY TRANSFERABLE VISUAL
INFORMATION REPRESENTATION

3.1 Framework
As illustrated in Fig. 1, the proposed Modality Transferable Visual
Information Representation (MTVIR) framework is composed of

Base Layer (BL) and Enhancement Layer (EL). Specifically, the BL
aligns with the traditional video codec, including several modules
(prediction, transform, quantization, in loop filtering, and entropy
coding) which are used to produce compact representation of vi-
sual signals based on the removal of intrinsic redundancies. The
signal divergences between the original and distorted videos in-
evitably introduced in the BL are compensated with the modality of
deep neural network which is specifically learned by the adaptive
transferring of signal level distortion.

As such, the EL is introduced, which is composed of three se-
quential modules including online learning, model compression and
rate-utility optimization, and the compact representation of deep
neural network is combined with the BL to form the final output
stream. The framework is able to shift the signal representation to
deep learning model representation which is essentially a compact
model with enhanced generative capability. Moreover, increased
degree of scalability and flexibility is also supported based on the
scalable architecture, as the bitstream composed of BL and EL can
be adaptively shaped according to the network and storage con-
strains, and at the decoder side the individual decoding of the BL
already supports the reconstruction of the fine texture.

3.2 Online learning
Online learning in EL serves as the transferable engine to charac-
terize and absorb the statistical divergences between the pristine
signals and the distorted version, in an effort to transform the visual
signals into a well established and highly compact model. To this
end, a neural network is utilized to learn such a mapping. Towards
a compact representation, the quantization is performed on the
parameters of the neural network with scale transform and affine
transform for achieving more compact representation.

In this work, the neural network model is redesigned based upon
Squeeze-and-Excitation Filtering CNN (SEFCNN) [22], as shown
in Fig. 2. In particular, we incorporate the mechanism of compact



Figure 2: Diagram of the network structure.

Figure 3: Illustration of the Conv Quantization Block.

neural network representation in this model by leveraging the scale
transform, quantization operation and affine transform which are
integrated as the Conv Quantization Block (CQB), as shown in Fig.
3. In particular, 𝑥 and 𝑥 ′ represent the input signal and output signal
of CQB, respectively. As such, instead of the convolutional weights
and biases learned in SEFCNN, the to-be-learned parameters in-
clude the reparameterizations of convolutional weights which are
subjected to be quantized, the biases as well as the weights of affine
transform. More specifically, the scale transform, quantization and
affine transform can be formulated as follows,

𝑊𝑄 = 𝑟𝑜𝑢𝑛𝑑 (𝑊𝐿 × 𝑆𝑐 ) , (1)

and

𝑊𝑐𝑜𝑛𝑣 = 𝑓𝜑

(
𝑊𝑄 × 1

𝑆𝑐

)
, (2)

where𝑊𝑄 indicates the quantizedweights,𝑊𝐿 indicates theweights
that should be learned, 𝑆𝑐 indicates the scale factor,𝑊𝑐𝑜𝑛𝑣 repre-
sents the convolutional weights in network, and 𝑓𝜑 (·) represents
the affine transform. As can be seen, the quantized weights are
obtained by rounding the scaled to-be-learned weights. Then the
quantized weights are down-scaled and fed to affine transform to
generate the convolutional weights. The residue between quantized
model and initial quantized model will be compressed by arithmetic
coding, which will be discussed in subsection 3.3.

To reduce training computational complexity and enable the
residual transmission, the network is trained by fine-tuning through

Table 1: Parameter number comparisons between weights
and biases.

Index Weights Biases Total

Parameter number 40224 337 40561
Proportion 99.17% 0.83% 100%

Table 2: Parameter setting of biases.

Index 𝑏𝑖𝑎𝑠1, 𝑏𝑖𝑎𝑠2, ......, 𝑏𝑖𝑎𝑠21 𝑏𝑖𝑎𝑠22

Parameter number 1×16×21 1

an initial model in online learning. More specifically, an initial
model with our architecture is obtained by using a large scale
dataset and then the online models are learned specifically to fit
the statistics of the video signals. Since the quantization operation
in the network is indifferentiable, the “straight-through” gradient
estimator proposed by Bengio et al. [8] is adopted, which performs
forward rounding and backpropagates the gradient directly through
the quantization operation to make the network trainable. In our
method, Mean Squared Error (MSE) is adopted as the loss function
to pursue the minimization on the difference between the output of
the network and the ground truth. The to-be-learnedweights are up-
dated by minimizing the MSE loss, and subsequently the quantized
weights and convolutional weights can be obtained. Our network
is trained with limited frames, such that the time consumption is
controllable to a certain extent.

3.3 Model compression
Model compression aims to compactly represent the learned model
by exploiting both intra model redundancy and inter model redun-
dancy. To remove the redundancy within a model, the quantization
of the to-be-learned weights is performed, as detailed in subsection
3.2, in an effort to reduce the model size for representation. To
remove the redundancy across models, the residue between current
learned quantized model and the reference quantized model which
is universally initialized is encoded to further shrink the model
stream.



Table 3: Parameter setting of weights.

Index 𝑊 1
𝑐𝑜𝑛𝑣 𝑊 2

𝑐𝑜𝑛𝑣, ......,𝑊
18
𝑐𝑜𝑛𝑣 𝑊 19

𝑐𝑜𝑛𝑣,𝑊
20
𝑐𝑜𝑛𝑣,𝑊

21
𝑐𝑜𝑛𝑣 𝑊 22

𝑐𝑜𝑛𝑣

Receptive field 3×3 3×3 1×1 3×3
Feature map number 16 16 16 16
Parameter number 3×3×1×16 3×3×16×16×17 1×1×16×16×3 3×3×16×1

Figure 4: The distribution of quantized weights at 1000 iter-
ations.

Regarding the redundancy removal within a model, we apply
quantization to represent the neural network model in a quantized
form. This greatly facilitates efficient compression on these discrete
values with ensured performance, since the quantization operation
has already been embedded in the network during the training
process. In our method, the parameter number of𝑊𝑄 is the same
as 𝑊𝐿 and 𝑊𝑐𝑜𝑛𝑣 . We only quantize the reparameterizations of
convolutional weights which account for a large proportion of the
model representation, as illustrated in Tables 1, 2 and 3. The number
of parameters influences the model size and performance. The
model with more filters achieves better recovery performance with
the expense of higher representation overhead. As such, a trade-off
between number of parameters and the recovery performance is
expected. We adopt the 32-bit floating point format to represent
𝑊𝐿 for accurate learning while the quantized parameters𝑊𝑄 are
in a 32-bit integer format.

In theory, the number of bits for representing𝑊𝐿 and𝑊𝑄 is
identical, while practically the average number of bits can be re-
duced by the quantization process. In a common sense, the average
number of bits for representing 32-bit floating number is 32. The
underlying reason is that the distribution of floating number𝑊𝐿

during training is continuous, and it is quite rare that two float-
ing numbers share the same value. However, the distribution of
the quantized weights𝑊𝑄 is discrete as shown in Fig. 4 and the
average number of bits for representation depends on the entropy
of the discrete signal. To quantitatively quantify the reduction of
redundancy within a model by quantization, the entropy of the
quantized parameters𝑊𝑄 at 30000 iterations is calculated, which is
2.31 while the number of bits to represent𝑊𝐿 is 32. In this manner,
it is estimated that the compression ratio of 13.85 times can been
achieved, taking the sequence of “BQTerrace” as an example.

Figure 5: Entropy comparisons between the original model
and residue.

Regarding the redundancy existing between different models,
the residue between online learned quantized model and initial
quantized model is compressed by arithmetic coding, which can
further economize the model transmission cost and achieve better
compression efficiency. The inherent reason lies in the fact that
weights of currentmodel are learned by fine-tuning the initial model
such that there exist high correlations. To illustrate the efficiency
of removing the inter model redundancies, the entropy of residue
and quantized parameters𝑊𝑄 are presented in Fig. 5. It can be
found that the entropy of residue is increasing with the epoch
due to larger difference between learned model at each iteration
and the initial model. It is also interesting to see that the entropy
of residue is increasing fast at the beginning of online learning
and converges after a few epochs (here we set 1000 iterations as
one epoch). Moreover, the entropy of the learned model is much
higher than the corresponding residue at each iteration. The residue
compressed by arithmetic coding is transmitted along with the BL
to the receiver side.

To illustrate the model compression performance, the compres-
sion ratio is further calculated at each epoch. It is worth mentioning
that the biases and the weights of affine transform are not quan-
tized, and the raw values in float32 format are incorporated into the
final bitstream. Therefore, the total model stream includes the com-
pressed residue of quantized weights, the biases and the weights
of affine transform. More specifically, the fixed size of biases and
weights of affine transform is 1.348KB and 0.368KB, respectively.
The compression ratio is formulated as follows,

𝑅𝑎𝑡𝑖𝑜 =
𝑅𝑜𝑟𝑖

𝑅𝑚𝑜𝑑𝑒𝑙

, (3)

where
𝑅𝑚𝑜𝑑𝑒𝑙 = 𝑅𝑟𝑒𝑠 + 𝑅𝐵𝑖𝑎𝑠𝑒𝑠 + 𝑅𝑓𝜑 . (4)



Figure 6: Compression ratio 𝑣𝑠 PSNR.

Here, 𝑅𝑜𝑟𝑖 and 𝑅𝑚𝑜𝑑𝑒𝑙 indicate the number of bits of the original
uncompressed model and the compressed model, respectively. 𝑅𝑟𝑒𝑠 ,
𝑅𝐵𝑖𝑎𝑠𝑒𝑠 and 𝑅𝑓𝜑 indicate the number of bits of residue, biases and
the weights of affine transform, respectively.

As shown in Fig. 6, at the beginning of online learning, we can
achieve relatively high compression ratio, due to the fact that the
difference between the current model and initial model is relatively
small. With the decrease of compression ratio, the recovery capabil-
ity becomes better in the early stage of online learning. However,
after several epochs, both the compression ratio and performance of
recovery converge. Although there are models with promising per-
formance by matching the original signals, the final performance
governed by both recovery capability and overhead of EL may
not be satisfactory. Consequently, the selection of models becomes
critical, which further motivates us to design the model selection
scheme based on rate-utility optimization.

3.4 Rate-utility optimization
Rate-utility optimization aims to figure out an optimally com-
pressed model that achieves the best trade-off between model rate
and utility. Herein, the utility is defined based on the final utility
of the EL, i.e., recovering the visual signal. As such, instead of the
distortion of the compressed model, the quality of visual signals is
what matters. In our scheme, after model compression, the candi-
date compressed models are obtained, which are subjected to be
evaluated by the Lagrangian cost,

𝐽 =

𝑁∑
𝑖=1

𝐽𝑖 , (5)

and

𝐽𝑖 = 𝐷𝑖 + 𝜆𝑖 × (𝑅𝑖 +
𝑅𝑚𝑜𝑑𝑒𝑙

𝑁
), (6)

where 𝐽𝑖 indicates the Lagrangian cost of 𝑖𝑡ℎ frame after enhance-
ment and 𝑁 is the number of frames in the group. 𝐷𝑖 indicates
the Sum of the Squared Error (SSE) of 𝑖𝑡ℎ enhanced frame by the
selected model, 𝜆𝑖 indicates the Lagrange multiplier of 𝑖𝑡ℎ frame. 𝑅𝑖
indicates the number of bits of 𝑖𝑡ℎ frame encoded in BL, and 𝑅𝑚𝑜𝑑𝑒𝑙

is the number of bits of selected model. It is worth mentioning that

Figure 7: Lagrangian cost during online learning.

Table 4: Performance comparisons in terms of BD-Rate un-
der AI configuration (anchor: VTM-4.0).

Sequences JVET-N0254 JVET-N0513 Proposed

Class A -1.22% -0.39% -1.94%
Class B -0.93% -0.58% -2.51%
Class C -1.90% -1.63% -3.65%
Class D -2.57% -1.32% -2.08%
Class E -2.22% -2.15% -5.34%
Class F -1.09% -1.00% -4.90%
Overall -1.56% -1.09% -2.63%

the cost of model rate is assigned to each frame. Finally, the model
with the minimum Lagrangian cost is selected and forms as the EL.

Taking the sequence of “BQTerrace” as an example, the La-
grangian cost of model at each epoch is shown in Fig. 7. The red
line represents the Lagrangian cost of the BL and the first point
of the curve indicates the Lagrangian cost of the initial model. It
can be found that in this case, the Lagrangian cost decreases with
the increasing of the epoch, finally leading to better representation
performance. It is also interesting to see that the cost of the initial
model is worse than the BL due to the fact that the recovery per-
formance may not always be satisfactory when the adaptation to
the specific content is absence.

4 EXPERIMENTAL RESULTS AND ANALYSES
4.1 Experimental setup
To evaluate the performance of our method, the reference software
of the upcoming video coding standard VVC (VVC Test Model ver-
sion 4.0, VTM-4.0) is incorporated as the BL. The initial model is
trained by using the database of DIV2K [2], which consists of 900
PNG pictures with the resolution of 2K (800 images for training
and 100 images for validation). To facilitate the comparison with
other methods, the video sequences are compressed with All Intra
(AI) and Random Access (RA) configurations under Common Test
Conditions (CTC) [10]. The learned models are applied on the lu-
minance channel and the Quantization Parameters (QPs) are set
following CTC {22, 27, 32, 37}.



Table 5: Performance comparisons in terms of BD-Rate under RA configuration (anchor: VTM-4.0).

Sequences JVET-N0110 JVET-N0254 JVET-N0480 JVET-N0513 Proposed

Class A -2.21% -1.74% -1.06% -0.37% -3.21%
Class B -1.52% -1.13% -0.55% -0.43% -4.64%
Class C 0.12% -1.39% 0.09% -0.76% -4.60%
Class D - -1.39% - -0.79% -4.50%
Class F - -0.50% - -0.35% -3.70%
Overall -1.36% -1.27% -0.58% -0.52% -4.07%

(a) Original (b) VVC (37.65 dB) (c) Proposed (38.18 dB)

Figure 8: Visual quality comparisons for “KristenAndSara” under AI configuration, where the 241-th frame is shown (QP=37).

(a) Original (b) VVC (30.40 dB) (c) Proposed (31.32 dB)

Figure 9: Visual quality comparisons for “BQSquare” under RA configuration, where the 184-th frame is shown (QP=37).

The module of online learning in EL is implemented with ten-
sorflow software package [1]. All the frames of input video and
corresponding reconstructed frames are cropped into patches ran-
domly and the patch size is set as 35 × 35. The learning rate is set
as 0.0002. It should be noted that the online learning will terminate
if the size is larger than 13.5KB. The scale factor in scale transform
is set as 10.

4.2 Performance comparisons
In this section, the proposed method is compared with the state-of-
the-art algorithms that enhance the quality of decoded videos on
the platform of VVC, including JVET-N0110 [31], JVET-N0254 [67],
JVET-N0480 [77] and JVET-N0513 [21]. The coding performance is
measured by BD-Rate [9] and the anchor is VTM 4.0. In particular,
in JVET-N0254 and JVET-N0513, a dense residual CNN and two light
weight deep CNNs are learned by the offline learning scheme. The

performance of the offline learning based methods highly depends
on the training dataset while our proposed method can well adapt
to the variation on video content. In JVET-N0110 and JVET-N0480,
online learning scheme is utilized to achieve an adaptive CNN loop
filter and the parameters of the learned model are signaled to the
decoder side. Compared to their methods, in our scheme the model
compression is naturally incorporated in the learning process, and
the final representation of the model is selected in a rate-utility
optimization sense, leading to the improvement of the performance.

From Table 4, it is observed that the proposed method achieves
2.63% bit-rate savings on average under AI configuration while the
methods of JVET-N0254 and JVET-N0513 achieve 1.56% and 1.09%
bit rate reductions, respectively. From Table 5, our proposed method
achieves 4.07% bit-rate savings on average under RA configuration
while the methods of JVET-N0110, JVET-N00254, JVET-N0480, and
JVET-N0513 reduce 1.36%, 1.27%, 0.58% and 0.52% bit rate on aver-
age, respectively. It can be easily found that our proposed method



Table 6: The coding performance and corresponding model bitrate for each sequence of CLASS B under RA configuration
(anchor: VTM-4.0).

Sequences Frame rate QP Bitrate (VTM-4.0)
(Kb/s)

Model size
(KB)

Model bitrate
(Kb/s)

Δ PSNR
(dB) BD-Rate

MarketPlace 60

22 14252.95 10.95 8.76 0.04

-1.73%27 5426.06 12.06 9.65 0.05
32 2430.38 10.77 8.61 0.06
37 1079.80 12.22 9.77 0.07

RitualDance 60

22 9443.66 11.16 8.93 0.10

-2.20%27 4717.00 11.39 9.11 0.12
32 2514.74 11.01 8.80 0.12
37 1322.51 11.20 8.96 0.12

Cactus 50

22 14402.89 12.49 9.99 0.05

-4.48%27 4300.21 12.13 9.71 0.09
32 1998.80 12.56 10.06 0.12
37 971.69 12.58 10.06 0.16

BasketballDrive 50

22 14684.65 12.05 9.64 0.04

-4.33%27 4788.42 12.25 9.80 0.09
32 2235.44 12.23 9.79 0.13
37 1117.68 12.48 9.98 0.15

BQTerrace 60

22 34653.52 13.06 10.45 0.10

-10.45%27 5827.09 12.73 10.18 0.15
32 1765.12 12.37 9.89 0.18
37 779.22 12.27 9.82 0.22

outperforms these CNN based algorithms under both AI and RA
configurations. In Table 4, it is also observed that the performance
of class D of our proposed is marginally worse than the method of
JVET-N0254. The reason is that the resolution of sequences in class
D is 416 × 240, which is smaller than that of other sequences. As
such, the relatively smaller bit rates of video streams in BL lead to
higher percentage of the overhead bit rate in EL. Moreover, under
AI configuration only one frame in a group (8 frames) is encoded
such that the relative overhead bit rate (model stream) is much
higher than RA configuration even the size of model is very close.
However, as shown in Table 5, our method outperforms other meth-
ods in all classes under RA configuration because the overhead bit
rate in EL is assigned to all frames in a group. To further demon-
strate the relationship between PSNR gain and the bit rate in EL,
the results of each sequence in class B are presented in Table 6. It
can be found that for the same sequence, the model size is different
under different QP settings since our method selects the optimal
model with minimum rate-utility cost.

Regarding the subjective quality comparisons, the original frames,
VVC decoded frames, and reconstructed frames from the proposed
method for “KristenAndSara” and “BQSquare” sequences are shown
in Figs. 8 and 9. For better visualization, certain regions are also
enlarged. It can be observed that the ringing artifacts and blocking
artifacts are eliminated when compared with the anchor. The de-
graded structural details have also been well recovered since our
method can well leverage the deep neural network representation
to accommodate the statistics of the visual signals. More specifically,
when enlarging Figs. 8 (b) and (c), it can be observed the marginal

pixels of “U” in (b) are mixed with unexpected white pixels of back-
ground. In (c), these white pixels are suppressed. In Figs. 9 (b) and
(c), scrupulous observers may also find that the area around the
woman’s left hand in (c) is smoother than the area in (b). Due to
powerful transferable capability with acceptable rate overhead, the
proposed method achieves effectively improved visual information
representation performance.

5 CONCLUSIONS
In this paper, a novel scheme for visual signal representation that
leverages transferable modality has been proposed. In particular,
online learning that accommodates the statistics of input signals
serves as a transferable engine from visual information to neu-
ral network model which is further compactly represented via
inter/intra model reduduancy removal. The trade-off between rate
and utility is further optimized, leading to the best representation
capability. With the state-of-the-art video coding platform of VVC,
extensive experiments show that visual information capability has
been improved with significant bit rate savings.
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