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Abstract. Depth maps generated by modern depth cameras, such as
Kinect or Time of Flight cameras, usually have lower resolution and
polluted by noises. To address this problem, a novel depth upsampling
method via progressive manner is proposed in this paper. Based on the
assumption that HR depth value can be generated from a distribution
determined by the ones in its neighborhood, we formulate the depth
upsampling as a probability maximization problem. Accordingly, we give
a progressive solution, where the result in current iteration is fed into
the next to further refine the upsampled depth map. Taking advantage
of both local probability distribution assumption and generated result in
previous iteration, the proposed method is able to improve the quality
of upsampled depth while eliminating noises. We have conducted various
experiments, which show an impressive improvement both in subjective
and objective evaluations compared with state-of-art methods.

Keywords: Progressive manner · Denoising · Depth map · Upsam-
pling · Probability Maximization

1 Introduction

As an indication of true position in 3D space, depth maps play a more and
more important role in a variety of different applications including object recon-
struction, medical, 3D television and entertainment. Although there exist several
range measuring approaches to capture depth map, it is difficult to acquire depth
information accurately and sufficiently. For instance, time of flight (ToF) cam-
eras can use active sensing to capture depth map per-pixel at video frame-rate,
and they become easily accessed and popular. However, the main disadvantage
of such cameras is that the resolution of generated depth maps is relatively
low compared with their associated color image. This is due to chip size lim-
itations and the captured depth maps always contain amounts of acquisition
noise. These defects limit the practical applications based on depth information.
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Fig. 1. Depth map upsampling results of art compared in details (upscaled ×4) with
noise. (a) Ground truth. (b) Diebel et al. [2]. (c) Yang et al. [11]. (d) Chan et al. [1]. (e)
He et al. [5]. (f) Park et al. [7]. (g) Ferstl et al. [3]. (h) Ours. (Zoom in for better view.)

Therefore, depth upsampling and denoising becomes a vital problem to the
development of 3D applications [4,8].

To address the above problem, several approaches are proposed to upsample
the depth maps via using additional corresponding color or intensity image as
cues. Diebel et al. [2] performed upsampling using a MRF formulation exploiting
the fact that discontinuities in depth and intensity image tend to co-align and
weights of the smoothness term were computed according to texture derivatives.
Yang et al. [11] used a joint bilateral filtering of a depth cost volume and a RGB
image in an iterative process. Chan et al. [1] used a noise-aware bilateral filter to
eliminate the noise during upsampling the depth map. Park et al. [7] proposed a
more complicated approach, which is based on a least-square optimization that
combines several weighting factors with nonlocal means filtering, segmentation,
image gradients and edge saliency for depth upsamling. Frestl et al. [3] formu-
lated the depth map upsampling as a global energy optimization problem using
Total Generalized Variation (TGV) regularization.

While these methods achieve good quality in smooth regions, the major
drawback is that their upsampling results contain blurring, over smoothing or
texture-copying around thin structures or sharp discontinuities. Moreover, when
upsampling a noised LR depth map, these methods produce worse results, since
the noise can be propagated to the upsampled regions, especially around sharp
edges or thin objects. All of the above methods cannot generate accurate HR
depth maps with sharp edges and less noise.
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To generate accurate HR depth maps with sharp edges while depressing
noise effects, in this paper we propose a depth upsampling algorithm based on
probability maximization in a progressive manner. The main contributions of our
work are two-fold: (1) Inspired by the work in [10], we provide the mathematic
derivations and build our model based on the assumption that the depth of a
pixel in HR depth map can be generated from a distribution determined by the
depth of pixels in its neighborhood in the same HR depth map. (2) To preserve
the sharp edges of the upsampled depth map and remove the noise, we exploit
the progressive framework via accumulating the influence of the initial input and
remove noise progressively. Compared to state of the art methods, our method
is superior in terms of both subjective and objective evaluations. Figure 1 shows
that our results can simultaneously remove the noise and achieve sharper edges
with less artifacts .

The paper is organized as follows: Sect. 2 details about our approach including
our model and the progressive framework. The experimental results are reported
in Sect. 3, followed by a conclusion of our work in Sect. 4.

2 Proposed Method

In this section, we will detail the proposed method to solve the depth upsampling
and denoising problem simultaneously. Firstly, we derive a probability maxi-
mization problem to build our model. After necessary derivations, we analyze
our model and show that our model describes the intrinsic properties of the
depth map. Secondly, to preserve the sharp edges of the upsampled depth map
and remove the noise, we introduce the progressive framework. In each iteration,
we use the output of previous iteration to update the input accumulating the
influence of the initial input until the output converges to a stable result, which
can remove some noise progressively.

2.1 Our Model

Inspired by [10], we assume the depth of a pixel in HR depth map can be gen-
erated from a distribution determined by those in its neighborhood in the same
HR depth map. It yields the following model for each pixel i.
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with Ik
i being the kth color channel of pixel i in color image. p is the position of

pixel i and q is the position of pixel j.
Then we maximize the probability and the optimal dH

i for each pixel i is
yielded as
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dH
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Setting Eq. 4 to zero yields a per-pixel constraint for each dH
i .

However, we meet a chicken-egg dilemma. Our goal is to obtain the HR
depth map, while dH

i can be reliably acquired only when dH
Ω is available. Thus

we introduce a roughly estimated HR depth map (eg. Bicubic upsampling result)
to break this dilemma. In addition, it can be used to avoid incorrect depth
prediction due to depth color inconsistency (some pixels with similar intensity
may have different depth, vice versa).

Therefore, we rewrite our model as follow. We write the whole objective
function in a matrix form. We denote by din the input vector, dout the output
vector, W the weight matrix. Each matrix element is W ij = wij/

∑
j∈Ω wij ,

where wij is the mixture coefficient corresponding statistically to color image,
spatial position and the roughly estimated HR depth map.

wij = exp{−
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σI , σs and σd adjust the importance of the spatial distance , intensity difference
and estimated depth changes.

The objective function with respect to dout is therefore formulated as

min(E(dout)) = min{(dout − W din)T (dout − W din)}. (6)

The global minima can be obtained by solving dout = W din, which is our final
practical model.

Our model describes the intrinsic properties of the depth map. Although
our model is similar to the combination of the neighborhood smoothness term
and NLM regularization in [7], their method takes segmentation, image gradient,
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edge saliency and non-local means into consideration, which is more complicated.
Moreover, the difference between our method and that of [7] is the idea how we
get the final HR depth map, which will be detailed in the following part.

2.2 Progressive Framework

In our model mentioned above, we set the parameters appropriately and conse-
quently the wij of the pixels in the neighborhood almost has slight difference in
their values. From a different perspective, pixels in the nearby area often have
similar depth.

Algorithm A1. PROPOSED METHOD
1: Input: low resolution depth map dL .
2: initialization: Map dL to high-resolution image as initial input dini, compute W .
3: for: k = 1 : max-step do
4: update the kth input din(k) according to 7 .
5: compute dout(k) = W din(k).
6: if (k = max-step)
7: dH = dout(k).
8: break.
9: end if

10: if sum(dout(k) − din(k)) ≤ ε, (ε = 0.0001)
11: dH = dout(k).
12: break.
13: end if
14: end for:
15: Output: high resolution depth map dH .

If the input contains more information, our model can produce the result
once. However, the initial input is the one with high resoltion but has fewer
non-zero values in the position we map the low one to high one. It means that
in initial depth map there exist many zero values, which is not enough to get
the final HR depth map once.

The idea of our method is that the depth of every pixel in HR depth map can
be acquired via accumulating the influence of the initial input . During
the progressive process, the updated result gets improved and contains
more information for the next iteration. Therefore we propose a progressive
framework.

In each step, we update the input as shown in the following.

din
i (k) =

{
dini

i , if i ∈ Ψ

dout
i (k − 1), otherwise

(7)

where din
i (k) is the depth of pixel i in kth input, dout

i (k − 1) is the depth of pixel
i in (k − 1)th output. We map dL to high-resolution image as initial input dini,
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Fig. 2. Progressive process displayed and intermediate results with specified step.

Fig. 3. RMSE in different step(up-scaled ×2)without noise

and the dini
i is the depth of pixel i in the initial input. Ψ is the non-zero position

in the initial input. The replacement makes kth input have the same value as the
initial input on the Ψ , which was called anchor points. But in the last step,
we don’t do the replacement, in order to cope with noisy input.

Pixels in the output of first step usually have a small value, since there exist
fewer non-zero values in initial input. Thus in Fig. 2, result in the first step seems
dark and it gets brighter and brighter during the progressive process. As is shown
in Fig. 3, our method is so powerful that the RMSE results converge so quickly.
The reason we can deal with the noised situation well is that we can remove some
noise in every step and also keep the thin structures like sharp edges. In the last
step the output except the anchor points has noiseless and accurate values. We
regenerate the values on the anchor points, thus the noise on the anchor points
is removed.
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3 Experimental Results

We test our method using synthetic examples from Middlebury 2007 datasets
[6,9] and the dataset of Frestl et al. [3] for quantitative and qualitative compar-
isons with the state of the art methods. In our experiments, we normalize all the
values of pixels and spatial coordinates and the roughly estimated depth map is
obtained by bicubic interpolation from the low resolution depth map.

During our experiments, σI influences the importance of guided color image.
When it fixes at a very small digit, the results will contain serious artifacts. It
means that the color image has excessive influence. σs influences the importance
of spatial difference. When it fixes at a very small digit, the results will be
over-smoothing. σd influences the importance of estimated depth changes. When
it fixes at a very small digit, the results will have blurings around the edges.
Consequenlty, in this paper we set the values of parameters as follows: σI =
0.12, σs = 0.02, σd = 0.04. And the size of neighborhood region Ω is 9 × 9. We
use the same setting when upsampling the noised input LR depth map.

To demonstrate the effectiveness of our proposed method, we show our results
in two parts: upsample the clean LR depth map and upsample the noised LR
depth map.

Fig. 4. Visual quality comparisons of ×4 upsampling on the Middlebury Art datasets
without noise. Row 1 Column 1: Ground Truth. Row 1 Column 2: Yang et al. [11].
Row 1 Column 3: He et al. [5]. Row 2 Column 1: Park et al. [7]. Row 2 Column 2:
Ferstl et al. [3]. Row 2 Column 3: Ours. (Zoom in for better view.)
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3.1 Upsample the Clean LR Depth Map

We downscale the Middlebury 2007 datasets [6,9] by bicubic interpolation method
as the clean LR depth map. Especially, we choose three of them to form our test
dataset: Art, Book and Moebius, which have clutter depth values and their corre-
sponding color images have complicated textures. We conduct quantitative eval-
uations on our results and the results provided by Frestl et al. [3].

The quantitative results in terms of the Root Mean Square Error (RMSE)
against the ground-truth depth maps are shown in Table 1. Beside the bilinear
interpolation, the proposed method is compared with five recent methods: Diebel
et al. [2], Yang et al. [11], He et al. [5], Park et al. [7], and Ferstl et al. [3]. The
best result for each dataset is highlighted. What can be clearly seen from the
numerical results is that our approach is the best compared to other state of
the art methods.

A visual comparison for the different methods is given in Fig. 4. For clean
inputs, Yang et al. [11], He et al. [5], Park et al. [7], and Ferstl et al. [3] methods
introduce some jaggy artifacts along edges because they depend too much on
the guide color image. Our method can generate results with sharper edges and
less artifacts.

Table 1. RMSE comparisons on Middlebury 2007 datasets without noise(upscaled
×2, ×4).

Art Books Moebius

×2 ×4 ×2 ×4 ×2 ×4

Bilinear 2.834 4.147 1.119 1.673 1.016 1.499

Diebel et al. [2] 3.119 3.794 1.205 1.546 1.187 1.439

Yang et al. [11] 4.066 4.056 1.615 1.701 1.069 1.386

He et al. [5] 2.934 3.788 1.162 1.572 1.095 1.434

Park et al. [7] 2.833 3.498 1.195 1.495 1.064 1.349

Ferstl et al. [3] 3.032 3.785 1.290 1.603 1.129 1.459

Ours 2.144 3.457 1.025 1.230 0.993 1.334

3.2 Upsample the Noised LR Depth Map

In reality, captured depth maps always have plenty of noise. For fair comparison,
we employ the noisy input dataset used in Frestl et al. [3].

Our method has a great advantage both in quantitative and qualitative eval-
uations compared with previous methods. Experiments show that our method
can remove lots of noise and preserve sharp edges.

The quantitative results in terms of the Root Mean Square Error (RMSE)
are shown in Table 2. Beside the bilinear interpolation, the proposed method
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Table 2. RMSE comparisons on Middlebury 2007 datasets with noise(upscaled
×2, ×4).

Art Books Moebius

×2 ×4 ×2 ×4 ×2 ×4

Bilinear 4.580 5.621 3.948 4.309 4.200 4.565

Diebel et al. [2] 3.489 4.514 2.064 3.002 2.127 3.105

Yang et al. [11] 3.005 4.021 1.874 2.383 1.917 2.418

Chan et al. [1] 3.437 4.464 2.091 2.773 2.076 2.759

He et al. [5] 3.546 4.412 2.375 2.737 2.481 2.831

Park et al. [7] 3.759 4.564 1.946 2.607 1.956 2.508

Ferstl et al. [3] 3.188 4.063 1.522 2.213 1.475 2.030

Ours 2.305 3.747 1.495 2.098 1.455 1.821

Fig. 5. Visual quality comparisons of ×4 upsampling on the Middlebury Art datasets
with noise. Row 1 Column 1: Ground Truth. Row 1 Column 2: Diebel et al. [2]. Row
1 Column 3: Yang et al. [11]. Row 1 Column 4: Chan et al. [1]. Row 2 Column 1: He
et al. [5]. Row 2 Column 2: Park et al. [7]. Row 2 Column 3: Ferstl et al. [3]. Row 2
Column 4: Ours. (Zoom in for better view.)

is compared with six recent methods: Diebel et al. [2], Yang et al. [11], Chan
et al. [1], He et al. [5], Park et al. [7], and Ferstl et al. [3]. Our results always
rank first in terms of RMSE.

A visual comparison for the different methods is given in Fig. 5. For noised
inputs, Diebel et al. [2], Yang et al. [11], Chan et al. [1], He et al. [5] methods
generate the noised results with blurrings. Although Park et al. [7], and Ferstl
et al. [3] methods can remove some noise, they still introduce some jaggy artifacts
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along edges because they depend too much on the guided color image. As can
be seen, our proposed method can produce high resolution depth maps with
sharper edges, clearer structures and fewer artifacts.

4 Conclusions

In this paper, we propose a novel method for depth map upsampling via progres-
sive manner based on probability maximization. The formulated model is able
to reveal and employ the intrinsic properties of the depth map. To preserve the
sharp edge of the upsampled depth map and remove the noise, we exploit the
progressive framework through accumulating the influence of the initial input
and remove noise progressively. Experiments show that our method outperforms
the state-of-art methods in terms of quantitative and qualitative comparisons.
Our method can produce the HR depth map with sharp edges, more accurate
values and less noise.

As future work, we would like to improve our work to meet the need of
real-time reconstructions and extend our method to more applications.
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